# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Graham Smith,<sup>a</sup>\* Urs D. Wermuth<sup>a</sup> and Jonathan M. White<sup>b</sup>

<sup>a</sup>Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia, and <sup>b</sup>School of Chemistry, University of Melbourne, Parkville, 3052, Australia

Correspondence e-mail: g.smith@qut.edu.au

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.002 Å R factor = 0.045 wR factor = 0.137 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Ethylenediammonium 4-nitroanthranilate dihydrate

The crystal structure of ethylenediammonium 4-nitroanthranilate dihydrate,  $[(C_2H_{10}N_2)^{2+}\cdot 2(C_7H_5N_2O_4)^-\cdot 2(H_2O)]$ , shows a three-dimensional hydrogen-bonded polymer in which both of the amine groups of ethylenediamine are protonated and each gives a total of four hydrogen-bonded interactions with oxygen and amine N atoms of the anthranilate anions as well as with the water molecules. The centrosymmetrically related anthranilate species are also linked directly to the water molecules, and give a doublechain structure down the *b* axis.

### Comment

Ethylenediamine (ethane-1,2-diamine = en) reacts with acids to give stable crystalline salts, and because of the relative similarity of the dissociation constants of en ( $pK_{a1} = 7.3$ ;  $pK_{a2}$ = 10.1), both amine groups are protonated, even in reactions with weak organic acids. With the  $enH_2^{2+}$  species, as is the case with protonated primary amine groups, the  $-NH_3^+$  hydrogens may be involved in up to six intermolecular hydrogen-bonding interactions with suitable acceptor atoms. The resulting hydrogen-bonded polymer structures acquire considerable crystal stability together with enhanced melting points. This is seen with the en salts of the relatively strong nitro-substituted benzoic acids, e.g. 3,5-dinitrobenzoic acid (DNBA),  $[(enH_2)^{2+}]$ 2(DNBA)<sup>-</sup>] (Nethaji et al., 1992; Lynch et al., 1994), while crystallization often includes lattice water molecules, increasing the structure-making e.g. ethylenediammonium 5-nitrosalicylate hydrate,  $[(enH_2)^{2+} 2(5-NSA)^- H_2O]$  (Smith & Hartono, 2002). With the bifunctional 3,5-dinitrosalicylic acid (DNSA), the rare occurrence of the  $(DNSA)^{2-}$  species has been observed in the salt  $[(enH_2)^{2+} (DNSA)^{2-}]$  (Smith et al., 2002). Our interest lies in the characterization of the hydrogen-bonding interactions of the nitro-substituted aromatic acids with Lewis bases, The structure of the title compound, obtained from the reaction of 4-nitroanthranilic acid (4-NAA) with en as a hydrate, described in terms of the centrosymmetric molecular unit (the unit cell contents)  $[(en)^{2+}$  $2(4-NAA)^{-}\cdot 2(H_2O)]$ , (I), is reported here.



© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved Received 14 August 2002 Accepted 4 September 2002 Online 13 September 2002



#### Figure 1

Molecular configuration and atom-naming scheme for the individual 4-NAA anion, the en cation and the water species in (I). Non-hydrogen atoms are shown as 40% probability ellipsoids

The structure determination of (I) shows that both the primary amine groups of ethylenediamine are protonated (Fig. 1). A hydrogen bond is found between an amine-H and oxygen of the carboxyl group of an the 4-NAA anion [N1-H1A···O2; 2.694 (2) Å]. The 4-NAA anions, one unit cell apart along the b axis, are linked by N1- $H1B \cdots O1(x, 1 + y, z)$  hydrogen bonds to form an infinite onedimensional chain. The molecules in the chain are linked to those in the inversion-related chain (1 - x, -y, 1 - z) by the water molecules, through  $O-H \cdots O$  hydrogen bonds, to form a double-chain structure (Fig. 2). These 4-NAA anion chains stack down the *a* axis and are linked by the  $(enH_2)^{2+}$  cations as well as the water molecules, giving a three-dimensional polymer (Fig. 3). A full hydrogen-bond listing is given in Table 1.

## **Experimental**

The synthesis of the title compound was carried out by heating, under reflux for 10 min, 1 mmol quantities of 4-nitroanthranilic acid (2-amino-4-nitrobenzoic acid = 4-NAA) and ethylenediamine (en) in 50 ml of 80% ethanol/water. After concentration to ca. 30 ml, partial room temperature evaporation of the hot-filtered solution gave red crystals.

#### Crystal data

| $C_2H_{10}N_2^{2+} \cdot 2C_7H_5N_2O_4^{-} \cdot 2H_2O_4$ | Z = 1                                      |
|-----------------------------------------------------------|--------------------------------------------|
| $M_r = 460.42$                                            | $D_x = 1.524 \text{ Mg m}^{-3}$            |
| Triclinic, $P\overline{1}$                                | Mo $K\alpha$ radiation                     |
| a = 6.6473 (5)  Å                                         | Cell parameters from 2947                  |
| b = 7.0748(5) Å                                           | reflections                                |
| c = 11.2317 (8) Å                                         | $\theta = 3.0-28.3^{\circ}$                |
| $\alpha = 76.686 \ (2)^{\circ}$                           | $\mu = 0.13 \text{ mm}^{-1}$               |
| $\beta = 77.660 \ (2)^{\circ}$                            | T = 293 (2)  K                             |
| $\gamma = 89.525 \ (2)^{\circ}$                           | Plate, red                                 |
| V = 501.67 (6) Å <sup>3</sup>                             | $0.40 \times 0.30 \times 0.20 \ \text{mm}$ |
| Data collection                                           |                                            |
| Bruker SMART CCD area-detector                            | 2052 reflections with $I > 2\sigma(I)$     |
| diffractometer                                            | $R_{\rm int} = 0.046$                      |
| $\varphi$ and $\omega$ scans                              | $\theta_{\rm max} = 28.6^{\circ}$          |
| Absorption correction: none                               | $h = -8 \rightarrow 8$                     |
| 4462 measured reflections                                 | $k = -9 \rightarrow 9$                     |
| 2475 independent reflections                              | $l = -15 \rightarrow 14$                   |



#### Figure 2







Packing in the unit cell, viewed down b, showing hydrogen-bonding associations as dashed lines

| Refinement                                            |                                                                |
|-------------------------------------------------------|----------------------------------------------------------------|
| Refinement on $F^2$                                   | $w = 1/[\sigma^2(F_o^2) + (0.0745P)^2]$                        |
| $R[F^2 > 2\sigma(F^2)] = 0.045$<br>$w R(F^2) = 0.137$ | + 0.0989P]<br>where $P = (E^2 + 2E^2)/2$                       |
| S = 1.07                                              | where $r = (r_o + 2r_c)/3$<br>$(\Lambda/\sigma)_{max} = 0.010$ |
| 2475 reflections                                      | $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$      |
| 174 parameters                                        | $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$     |
| H atoms treated by a mixture of                       |                                                                |
| independent and constrained                           |                                                                |
| refinement                                            |                                                                |

# Table 1

Hydrogen-bonding geometry (Å, °).

| $D - H \cdots A$                    | D-H            | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|-------------------------------------|----------------|-------------------------|-------------------------|------------------|
| $N1-H1A\cdots O2$                   | 0.88 (2)       | 2.04 (2)                | 2.6935 (17)             | 130.8 (18)       |
| $N1 - H1B \cdot \cdot \cdot O1^{i}$ | 0.82(2)        | 2.12 (2)                | 2.9258 (17)             | 167.8 (17)       |
| $N3-H3A\cdots O5^{ii}$              | 0.90 (2)       | 1.95 (2)                | 2.7960 (18)             | 157.5 (19)       |
| $N3-H3B\cdots O3^{iii}$             | 0.87 (2)       | 2.41 (2)                | 3.0564 (18)             | 130.9 (17)       |
| $N3-H3B \cdot \cdot \cdot N1^{iv}$  | 0.87 (2)       | 2.52 (2)                | 3.1847 (18)             | 133.8 (18)       |
| $N3-H3C \cdot \cdot \cdot O2^{i}$   | 0.917 (19)     | 1.937 (19)              | 2.8250 (17)             | 162.5 (14)       |
| $O5-H5A\cdots O1^{i}$               | 0.84 (2)       | 1.91 (2)                | 2.7429 (16)             | 179 (2)          |
| $O5-H5B\cdots O2^{v}$               | 0.79 (3)       | 2.18 (3)                | 2.9647 (16)             | 171 (3)          |
| $C6-H6\cdots O1$                    | 0.93           | 2.41                    | 2.7454 (16)             | 101              |
| Symmetry codes: (                   | i) $r 1 + v z$ | (ii) $-r \ 1 - v \ 1$   | -7; (iii) $r - 1$       | $v_1 + z$ (iv)   |

1-x, 1-y, 1-z; (v) 1-x, -y, 1-z.

H atoms involved in hydrogen-bonding interactions (H1A, H1B, H3A, H3B, H3C, H5A, H5B) were located from a difference Fourier map and their positional and isotropic displacement parameters were refined. Others were included in the refinement at calculated positions as riding models. For refined H atoms, the N–H range is 0.87 (2)–0.92 (2) Å; the O–H (water) values are 0.79 (3) and 0.84 (2) Å.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1999); program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 1999); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from The Centre for Instrumental and Developmental Chemistry

(Queensland University of Technology) and The University of Melbourne.

### References

- Bruker (1997). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART. Version 5.55. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lynch, D. E, Smith, G., Byriel, K. A. & Kennard, C. H. L. (1994). Acta Cryst. C50, 1291–1294.
- Nethaji, M., Pattabhi V., Chhabra, N & Poonia, N. S. (1992). Acta Cryst. C48, 2207–2209.
- Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002). Aust. J. Chem. 55, 349–356.
- Smith, G. & Hartono, A. (2002). Unpublished results.
- Spek, A. L. (1999). *PLATON* for Windows. September 1999 Version. University of Utrecht, The Netherlands.